Using Density Estimation to Improve Text Categorization
نویسندگان
چکیده
This paper explores the use of a statistical technique known as density estimation to potentially improve the results of text categorization systems which label documents by computing similarities between documents and categories. In addition to potentially improving a system's overall accuracy, density estimation converts similarity scores to probabilities. These probabilities provide con dence measures for a system's predictions which are easily interpretable and could potentially help to combine results of various systems. We discuss the results of three complete experiments on three separate data sets applying density estimation to the results of a TF*IDF/Rocchio system, and we compare these results to those of many competing approaches.
منابع مشابه
Kernel-based Text-categorization
This paper presents some techniques in text categorization. New algorithms, in particular a new SVM kernel for text categorization, are developed and compared to usual techniques. This kernel leads to a more natural space for elaborating separations than the euclid-ian space of frequencies or even inverse frequencies, as the distance in this space is the most usual distance between distribution...
متن کاملLinguistic Techniques to Improve the Performance of Automatic Text Categorization
This paper presents a method for incorporating natural language processing into existing text categorization procedures. Three aspects are considered in the investigation: (i) a method for weighting terms based on the concept of a probability weighted amount of information, (ii) estimation of term occurrence probabilities using a probabilistic language model, and (iii) automatic extraction of t...
متن کاملArabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملLarge margin multinomial mixture model for text categorization
In this paper, we present a novel discriminative training method for multinomial mixture models (MMM) in text categorization based on the principle of large margin. Under some approximation and relaxation conditions, large margin estimation (LME) of MMMs can be formulated as linear programming (LP) problems, which can be efficiently and reliably solved by many general optimization tools even fo...
متن کاملImproving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002